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1. IntroductJon

The class of bivariate distributions in which we are interested

in this paper are those which are positive quadrant dependent. To be more

specific, let B be the Borel a-field on the real line, R and BxB be

2
the Borel c-field on the two-dimensional euclidean space, R2 . If V is

a probability measure on BxB , we denote the first and second marginals

of U by P and U2  respectively. The probability measure U is

said to be positive quadrant dependent if

;c, x[d, > U ": u

for every c,d in R. The above notion can be restated as follows. Let

X and Y be two real random variables with some joint distribution function

F. X and Y are said to be positive quadrant dependent if

Pr(X > x, Y > y) > Pr(X > x) Pr(Y >y) Q

for all x,y in R. See Lehmann (1966) for this and related notions of . .____

dependence. B ... ...... .......... ~Di ,t ibution/ -
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We want to look at the above notion of dependence from a global

point of view. Choquet's theorem is in the background of the ensuing discussion.'i*
Suppose M is a compact convex subset of a locally convex linear topological

space. Then by Krein-Milmn theorem, there is atleast one extreme point of M. %.

Choquet's theorem represents every member of M as a mixture (in some sense)

of the extreme points of M. For a full discussion on Choquet's theorem,

see Phelps (1966). We want to pursue the same line of tack in studying the

notion of positive quadrant dependence. Accordingly, let M PQD denote
all P.

the collection o. bivariate positive quadrant dependent distribtuions.

We equip fPMD with the topology of weak convergence. Suppose i) MPQD PQD
is compact and (ii) is convex. Then in accordance with Choquet's
theorem we can write every member of M PQD as a mixture of extreme points

of M PQD. There are certain common properties of extreme point distributions

which are preserved under mixtures and a good understanding of the set of

all extreme point distributions would provide an insight into the structure

of a general bivariate positive quadrant dependent distribution.

But, the set MA is neither compact nor convex. Non-compactness
PQD

of the set M PQD is not surprising. The malaise stems from the non-compactness

of the class of all bivariate distributions. The following bivariate

distributions are positive quadrant dependent.

2 X- 1  2

ii 1/4 1/4 129 1/9

,2. 1/4 1/4u 2 4/9 2/9

But (1/2)U + (1/2)X is not positive quadrant dependent.

r'I

......................................
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In the next section, we identify some natural subsets of M
MPQD

which are compact and convex. In Section 3, we discuss a method of enumerating

the extreme points of these compact convex sets. In Section 4, an application

of the results of Sections 3 and 4 is discussed in detail in the context

of contingency tables. A

2. Compact convex subsets of

Let X and V be two fixed probability measures on the Borel

a-field B of the real line. Let M(X,v) be the set of all bivariate

distributions p with the first and second marginals ) and v

respectively, i.e.,

M(X,v) { j; is a probability measure on BxB , X

and m ''

Let M (X,V) be the set of all bivariate positive quadrant dependent
PQD

distributions with the first and second marginals X and v respectively, i.e

M (X,v) " ;i '. is positive quadrant dependent, ui1  X
PQD

and u2  V1.

These sets are topologically and functional analytically are nice

as the following result exemplifies.

Theorem 2.1 M(X,V) and M PQD(X,V) are compact convex sets.

Proof. See BbasKara Rao. Krishnaiah and Subramanvam (1985).

Thus we obtain a decomposition of M into compact convex subsets .:

PQD

as follows.

,.O.D " J "PQD('..

• .-"&
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3. Extreme points

Extreme points of the compact convex set M(,,v) have been

characterized by Lindenstrauss (1965) and Douglas (1964). The following

is their result.

Theorem 3.1 A probability measure 11 in M(X,'v) is an extreme point of

M(X,V) if and only if t-he collection of all functions h from RxR to R

which are of the form h(xy) -f(x) + 9(y) xy in R for some f and
integrable with respect to ^ and v respectively

g real-valued integrable functions on the real line is dense in

.- 1IIRxR, SxB, U). [.

Proof. See Douglas (1964, Theorem 1, p.243). See also Lindenstrauss (1965,

Theorem 1, p.379).

We generalize the above result. We operate in the more general

realm of probability triplets. Let (X,C,X) and (Y,O,v) be two

probability spaces. Let M(X,v) be t-he collection of all probability

measures Li on the product a-field CxD such that the first marginal of

u is X and the second marginal of Li is v. This notation agrees

with the notation introduced above in the context of probability measures

on the real line. Let

F = {I ; 3 £ Cf {I C C 1,
0 BXY XxC

where I denotes the indicator function of the set A. Let F be the
A

linear manifold spanned by F
0
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Theorem 3.2 A probability measure U on CxD is an extreme point of

M(A,V) if and only if F is dense in L (XxY, CxD,u). -

Proof. The proof here is modelled on the proof of Theorem 1 of Douglas (1964,

p.243). Suppose U is not an extreme point of M(X,V). Let P = ( + n)/2

for some and f1 in M(,V). This immlies that 2U > n > 0, and by

Radon-Nikodym theorem, there exists a function h in L (XxY, CxV,u) such

that

dn.

-l =h a.e. , and

I - h 0 a.e. J--

The function 1 - h is orthogonal to F , i.e.,

ff.( - h) dl m If dUl - ffh dli

- f d -- f dn - Ifdi - If du

= 0 for every f in F.

This clearly demonstrates that F is not dense in L (XxY, CxD,u). For,

if F were to be dense, since the dual L*(XxY, CxV,Ui) of L (XxY, CX,U)

is L (XxY, CxV,U), the linear functional induced by 1 - h on L vanishes

identically on F would imply that 1 - h 0 0 a.e.[P] .This contradiction

proves the assertion made above.

. . .%
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" Conversely, suppose F is not dense in L (XxY, CxDu). Then

there exists an essentially non-zero function h in L (XxY, CxV,1)

orthogonal tc F. Set

'% r.

T1 f(E) h hdj for E in CxV.
E

Since f hf u O for every f in F, we have, in particular, f h ft 0. .2

This implies that rn(XxY) 0. Define

""(E) ( h/JJhJJ.) &4 , and
E

i(E) = f (1 h/llhil.) d for E in CxV
E

where [[h [ is the L -norm of h. Since 1 + (h/JhHJ.) > O a.e. [;,

the set functions and v are non-negative. In fact, v e s M(A,v).

We can now write j = + u)/2. This completes the proof.

We now exhibit some extreme points of M(Xv) using measure

preserving transformations. Let T be a measure preserving transformation

from X to Y preserving the measures ' and v, i.e., T (D) E C and

X(T (D)) = V(D) for every. D in V. Let G be the graph of T, i.e.,

G {(x, Tx) ; x C X}.

Let P be the projection map from XxY onto X, i.e., P (x,y) x for

every (x,y) in XxY. We claim that for every E in x , PI(E n G) is

available in C.For, let E - {E e CxV ; P E G)e C}. One can check that172

• °



th rctngesets in C) ar vilbein EE is closed under

complementation and countable unions. Hence E =C30. Define a set 'P

function jj on CxV as follows.

p (E) X )(P 1 (E nG)) for E in C4

We now check that U. is a probability measure on C) with marginals

Aand v.

u(CxY) X (P (CxY) r) G))

x X(C 1 Y) X X(C) for C in C.

ij (XxD) =X(P ((XxD)(n G)) for D in D.

= (XC\TD) =X(T- D)

=v(D) ,since T is measure preserving.

The assertion that U. is a probability measure is obvious.

We now claim that G is a thick subset of XxY under .,i.e.,

the outer measure of G, P*(G) -1. For, if E is any set in CxV

containing G, then P0 (Etl G) =P 1(G) M X. Loosely speaking, the

measure u is concentrated on the graph of T.

Finally, we assert that jj is an extreme point of M(X,v). suppose WF7

- ;+ W)/2 for some ;and i in MUMv. It is obvious that

- 1 -1 v*(G). Further, for any E in CxV, ;*(E f)G) ;(E)

-1
and 1.*(EflG)- U(E). 1-9 CxD c CxD, CCxD) f~G (=(C CT D) x Y. Consequently,
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(CxD) < ((C n D) x Y) X(C CT D) = l(CxD),

and

, J(CxD) < U(C CT D) x Y) = X(C CT D) I.(CxD).

Hence U (CxD) = (CxD) Ij(CxD) for every C in C and D in V.

Therefore, U = . This completes the proof.

We now want to discuss characterizing the extreme points of

MQD(Xv), where . and v are fixed probability measures on the Borel

C-field S of the real line. One can Prove that the product measure V x

is always an extreme point of fPQD (XV). See Subramanyam and Bhaskara

Rao (198:). But this is in total contrast with the case of M(X,,j). The

product measure 4 x V is an extreme point of M(X,V) if and only if

either i is 0-1 valued or V is 0-1 valued. See Kemp (1968, p.1356).

We do not have any characterization of the extreme points of M (PQD (,V)

in the general case. Note that ,M.1PQD ,v) is a compact convex subset

of M(A,')- It is easy to see that if U is an extreme point of M(X,%)

and 4belongs to then is an extreme point of M).

If ! is an extreme point of MpQD(Qv) , U need not be an extreme point

of M(;.,v)- The numbers also do not exhibit a pattern. If X and V

s
have finite suport, there are case when the number of extreme points of

I PQD(A,v) is strictly less than the number of extreme points of M(X,V)

and cases the opposite happens.

......... - ......-.... . . .
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When the probability measures and V have finite support,

the subject of the determination of the extreme points of M(Xv) and

of M QD(X,V) have a distinct flavour. We now proceed to describe a

method of determining the extreme points of these compact convex 
sets.

Without loss of generality, assume that the support of is {1,2,... ,m}

and that of V is {1,2,...,n}. Let pi = ({il), i = 1,2,...,m and

V ({I j 1 2,.n. From now on, we use the suggestive notation

M(X,V) ,pl,2...m;ql~q2 ...,.qn .'

and

M PQD(X,V) = QD(PlP 2 . n

Extreme points of M(plp 2,.... pm;ql,q 2" n)

Any bivariate distribution in M(plp 2 ... P ... qn)-

can be described in the form of a matrix P = (pi) of order m x n

with the following properties.

(i) pi. > 0 for all i and j.
i~ii ) -

i pi = 9 1 for j - 1,2,..., n.
i-i ;

n
(iii) ~~~ pi for i 1,2,..., m.

Definition 3. Let P = (pi) be any matrix in M(pl ,p2,.. rpm ;qlq, .- ,qn

i~j nl.P;1 .

An ordered sequence I, .i... .2 , j in P is said to be a

booo in P if

(i) k is even,

(ii) i= i 2 , 3  i4' k-i k ,

%" ,

_~

-_ .. . : j
. . . . . . . . . . . . . . . . . .
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(iii) 2 - J3' J4 = J5 . ' .. k -

'1a4

(iv) the pairs (i ,j ) for r - 1,2,... ,k are distinct.
r, r

A loop in P is said to be positive if every member of the loop is

positive. Support of P is the collection of all pairs (i,j) for which

piJ is positive.

The following lemmas are helpful in characterizing the extreme

points of M(yl,p2,...,pm;qlq, q

Lemma 3.1 Every row (column) of a matrix P in M(p,,p 2 ... ,p;q,q2 ...q

contains an even number of elements of any loop in P.

Proof. Obvious. Pi2 2 Pi2J " P ri Pir  ; ..

2 2 " 2 3 . r..r r r+l
Lemma 3.2 If " ' p s an infinite sequence of elements from a

1 2
a given matrix P with the property that any two consecutive suffixes are

distinct, then we can find a loop in P consisting of elements from the

given sequence.
,.1.

Proof. Let b be the first element in the sequence whose suffix agrees

with the suffix of one of the elements a preceding b.

Case i). a - p and b = pir~r . Then Li k , P*k;

i ' -ii P - j r j ,.

k k r r rk k k k+l -lk2
Pirl FPr i rl is a loop in P.

Case (iii).ao and b o 'h T en ..i

Case (ii). a p R

kk r r+l k+l k+l kvil k2

pir r 10~r 1  is a loop in P. .'T

Case (ii).. a - and b n Then ,p

.... -& .. .. . .-

k-j °m rt.~lkl k~



o ,p is a loop in P.
r r r r+l

Case (iv). a p p.. and b z p.. This case can be disposed of
k k+1 r r

as in Case (iii). -

Lemma 3.3 If every row and column of P contains atleast two positive

elements, then P contains a positive loop.

Proof. It is easy to construct an infinite sequence of positive elements

in P satisfying the hypothesis of Lemma 3.2.

We now give five different ways of characterizing the extreme

points of M(p 1 p2 ,... PPM*ql 2 n -... .

Theorem 3.3 Let P be any matrix in M(lp 2 ... ,p;qlq 2 ,...,q). The

following statements are equivalent.

i) P is not an extreme point of M(plp 2,.... ,pm;q,2 ....,n).

(ii) There is a positive loop in P.

(iii) There exists a submatrix E of P having the property that

every row and column of E has atleast two positive elements.

(iv) There exists a square submatrix D of P having the property

that every row and column of D contains atleast two positive elements.

(v) There exists a square submatrix F of P, say, of order k,

having the property that the number of positive elements in F is atleast 2k. *"-

Proof. The equivalence of (i) and (v) was proved by Lindenstrauss (1965,

p.382). The equivalence of i) and (ii) was proved by Klee and Witzgall

(1968, Theorem 4, p.265). We prove the equivalence of these five statements

directly as follows. (Lemma 3.2 plays a crucial role in our proofs.) ..-

...

5.S .** S.. *~. * *-,*.
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(i) -> (ii). Suppose P is not an extreme point of M(P
2..

qq q .. ). For the remainder of this proof, we denote the above compact

convex set simply by M. Then we can write P - aB + Cl--a)C for some
.1

distinct B = (b ) and C - (c ) in M and 0 < a < 1. If p O, 
ijij ij

then' b - 0 - c Since P and B are distinct, there exists a pair
ii ijf

(,1 such that o . # b. . Clearly, p. is positive. Assume,

without loss of generality, that p > bill There exists J2 #  I such

i j 1jl 2

that p 2 < bil2 Note that ol is positive. There exists i # i
i j i * j2 11 2 1l 2 1l 2

sc2a2, and J 0 J such that p < b and so on.
2 2 2i 2 P2 3 i2 .3 o

Thus we can construct a sequence p P 2 2 ... of

positive elements in P with the property that any two consecutive suffixes

are distinct. By Lemma 3.2, we can find a positive loop in P.

(ii) -> (v). Suppose P contains a positive loop Pi Pi2J2'

Prjr  . Let sI - the number of distinct elements among ill ' 2 # ... r
r r

and s2 = the number of distinct elements among ' J2 ' .... jr" Assume,

without loss of generality, that sI  s2 Let E be the submatrix of

order s 1 x s2 determined by i1 , i2' . - th rows and Jl' J2'

j -th columns. Let D be a submatrix of E obtained by deleting s2 - s .

columns from E. Since every column of D contains atleast two positive

elements, the number of positive elments in D is atleast 2s1, and the order

of the matrix D is sI x s.
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(v) m-> (iv). This is clear.

(iv) mm> (iii). This is also clear. .-...

(iii) U-> (ii). One can easily extract a positive loop from E and

hence from P.

,>( Supoe i 2 2 ... ,ikJ is a positive(ii) W. uppse "'"i P

loop in P. Let 0 < E < minimum{ P. ., P2 ... , Define two

matrices B (b ) and C - (c ) as follows.

b 0 + C , if s is odd,
i j

55s s s

MP, J -C , if s is even, Nor

b M pi , if (i,j) # (is, )  for any s 1,2,...,k,

C W p 8 + , if s is even,

-- i  - , if s is odd,

c pi' if (ij) # (iss ) for any s - 1,2,...,k.

Note that B and C are in M, distinct and P -(B + C). Consequently, .:

P is not an extreme point of .

This completes the proof of the theorem.

The above theorem provides some information on the supports of

extreme point
of the bivariate distributions in M(pp 2 .... ,p ;qltq2 ,... ,q).

M..#...
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Corollary 3.1 Let P and Q be two distinct extreme points of

M(PIp m... ;qlq Then the support of P neither contains I.

nor is contained in the support of Q properly.

Proof. Suppose the support of P is contained properly in the support off

Q. Let (il,J be such that > O - where P- (pi) and• qil 1 j' 'i :

(q There exists 2 # Jl such that q. .< p.. 2 . Clearly,

)j2 i j2  i 1 ) 2 *

q is positive. For, otherwise, p will be equal to zero. There I
i~j

1i 222
exists i i such that q > which implies that q isi2 2 i2J2 i2J2 ':"

positive. Proceeding as above, we can construct an infinite sequence

qiJ 1  J2  i2J2 q .2q 3 ... of positive elements in Q with the

property that any two consecutive suffixes are distinct. By Lemma 3.2, there

exists a positive loop giving rise to a contradiction to the veracity of

Theorem 3.3. A similar argument shows that the support of Q is not '

contained in the support of P properly.

Corollary 3.2 Let P u (pi) and Q - (a ) be two distinct extreme points

of M(plp 2,...,pm;ql q2,...,q). Then the supports of P and Q are

distinct.

that
Proof. Suppose the supports of P and Q are equal. Since P and Q

are distinct, there exists a pair (il,1 l) such that i 1 j q. .-

Assume, without loss of generality, that Pi ij > ql which obviously

1.1 °ii.

,".

a,.. _. .' *-* *.* 4 ._'.. ., ' :. - r .. . -" . : -. "" "" -.''" ".". " " % •"• -"- ."- * •. '. ' ."' • .- . . -"" "" . . "aX
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implies that that p is positive. There exists 2 such that

112

p < q. Since the supports are equal, p is positive. There

1.2 1 2  1 2  1

exists i2 # iI  such that D 2 . , and so on. Thus we can construct
2 2 ~2 2 , PiJ2; i2J, PiJ3; .. f poitiv...

an infinite sequence pi., p p p ... of positive..

1-l 1 2 2 2 2 3

elements in P with the property that any two consecutive suffixes are

distinct. By Lemma 3.2, there exists a positive loop in P negating the

validity of Theorem 3.3. This contradiction proves the result.

Corollary 3.3 The number of extreme points of M(pI'p 2
'. ' '  ;q " q qn)

is finite.

Proof. The set of all subsets of {(i,j) ; . - 1 to m, j = 1 to n} is

finite.

Corollary 3.4 Let S = (s be the matrix in Wpl,p .. ,pm;ql

where s p q for all i and J. Then S is an extreme point of

(plP 2 , ... pm;qlq 2 "' qn) if and only if pi I i for some i or

q -1 for some -.

Proof. If either pi -1 for some i or qj -1 for some 3, then

M(plp 2 ,... ,p ;qlq 2 ,... ,qn) contains only one matrix S and consequently,

it is an extreme point of M(plP 2,.. .,P#q ,q2,...,qn). On the other hand,

if pi # 1 for every i and q 1 for every J, then we can find

Pu, °v' ,r' ,t all positive with u v and r 0 t. Then , Su, s D*

Pu -v, q t The [ur' ut, vt

is a positive loop in S. Hence S is not an extreme point.



Remarks. The matrix S defined above is the product measure of the distri'. dO

'p and q pq2 , qn" The above corollary is a discrete analogue 
1.

of Theorem 3 of Kemp (1968, p.1356 ).ep

1. m 2, n 2; P, p qq-

Extreme points of M(, ; ,.) are

and [

2. m 2, n- 2; 1 - "/4. p2 " 3/4; q, 2/3 and q 1/3.

Extreme points of M(1/4,3/4; 2/3,1/3) are

0o 3/1. j-3/1.2 0
2 and

-112 i1/1. L5/12 4/12 . "

3. m 2, n 3; Pi P 2  1/2; ql q 2 q 3  i/ 3.

Extreme points of V(1/2,1/2; 1/3,1/3,1/3) are

A/ 1/6 0 r2/6 0 1/61

16 2/6j 2/6 1/6j,

rI/22/6[0 2/6 1/61 ,.

LL/6 0 2 /6  2/6 2 1/6j ,

.

. . . .. . . . . . . . . . . . . . .
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ro 1/6 2/61 Fl/6 0 2/6j

L2/6 1/6 0 and L1/6 2/6 0j

Extreme points of MPOD (plop 2 #... p m~ q I# 2? q-n

We discuss a method of enumerating the extreme points of the

above comoact convex set with the help of some examples. From this discussion,

a general strategy can be devised to enumerate the extreme points in the

general case.

1. The 2 x2 case.

one can show that any bivariate distribution in M Q(plop2  qloq)

given in the form of a matrix P (p )must satisfy the inequality
ij

p2 q2  p22  P2 pA q 2

where a A b denotes the minimum of the two numbers a and b. Conversely,

if a number p 22  satisfies the above inequalities, one can find a matrix

in M plpjIP2  q11q ) whose (2,2)-th element is p22  More precisely,

this matrix is given by

I -q2 1022 q2-P22]
P2;P22 ~22

Consequently, the extreme points of MPQD (PltP2 qtq 2) are obtained by

setn 22 - 2q2  and p 22 -P 2 A q 2  separately and fill the rest of

the entries of the matrix using marginality conditions. There are only two



1 extreme points of MPQDlplp2 1 ql,q2 ) and these are given by

•q. p...l1 1 2
.L.L h. q. q2-p 2

and if P2/A q2 P2'
p~l .2q2J 0 p2 J.:
p 91 0

p1q1  -1q2 1 [

and j if P2I q2 q2 'LP2q -P2 L P22]-q2 q2

Every member of MPQD(p1 up 2 ; ql,q 2) is a convex combination of these

two extreme points. The following are two concrete examples.

Ex~leI p1  p 2  1/2 q, q 2.

The extreme points are

1/2  01 ad /4 1/41,.;. and i-

0 1/2j L/4  1/41

Example 2. p1  1/4, v2 -3/4 and c, - 2/3, q2  1 1/3.

The extreme points are

F / 2 0 ]F2/12 1/121
LS/12 4/12i 6/12 3/12J

2. The 2 x 3 case.

In this case, the determination of the extreme points of

I.
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M PQD(P1Op2; qlq 2 ,q 3 ) can be achieved graphically. If the matrix (p )

belongs to MPQD(PlP2; qlq 2 ,q3) , then one can check that the following

ineaualities must be satisfied.

P2q3 < P2 3 < P2 q 3  and 1.

P2.2 + p2q3) VP 23  P P22 + 023 -- P2 A (q2 + P23)"

(a W b means the maximum of the two numbers a and b.) Conversely, if

P22 and p23 are two numbers satisfying the above inequalities, then

the matrix

q-P2+p2+p2 q 2-P22 q 3-P231

SP2-P22-P23 P22 P23 -

-23;
belongs to M pQD(PlP2; ql.qq The above two inequalities determine .

a simplex in the two dimensional P - p2 3 plane. The extreme points of

this simplex give the extreme points of M (p ,p2 ; ql,q 2 ,q3 ). As an

illustration, let 01 P 2 - 1/2 and ql = 2 q 3 1/3. The determining

inequalities are

1/6 < p23  < 1/3 and

(1/3% V p2 3 -1/3 < p22  p 2 3  < 1/2 A (1/3 p23 ) - 1/2.

These inequalities determine the following simplex in the p22 - P23 plane.

There are four extreme points of the set Y (1/2,1/2; 1/3,1/3,1/3) which

are determined by the four extreme points of the simplex. Note that the set

M(1/2,1/2; 1/3,1/3,1/3) has six extreme points.

-;:.:- '* .. . ~ $ S ...S.-.::: :::::::::::::::::::
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P22
'S.

1/3 4 P

1/6 P
1 3

o1/6 p ?'
' 23

The four extreme points corresponding to Pit P2 F P3 . P4  respectively are

r / 6 1 6  1 / 1/ 6 1 / 3 O

/6 1/6 1/61 , /6 13

/3 1/6 0o3f

10 1/6 1/31 0 0/ 1/61
,_o I I . 13 1/-.6

Every member of M (1/2,1/2; 1/3,1/3,1/3) is a convex combination of these .

four extreme points.

3. The 2 x 4 case. 
.

One can check that if a matrix (pjj) belongs to M QD(PlP 2 -

PQD 2.

7, '. ",
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ql,q 2 ,q 3 ), then

P2q4  P24 <  2 q 4 '

(P2 q3  P 2q4 ) P 2 4 
<  P23 +  24 P2 (q 3 + P 2 4

' "

(p 2 q2 + p q3 + P2q4) V (p 2 3 + p 2 4 ) < p 2 2 + p2 3 + p 2 4  <

P2 A (q2 + P23 +24

Conversely, if p22P and o are three numbers satisfying the above
p2p23  -24

inequalities, then they determine a member of MpQD (pp 2 ; qlq 2 , 3 ) in S.

an obvious way. For details, see Subramanyam and Bhaskara Rao (1985). We

illustrate the determination of the extreme points of this set with the

help of a concrete example.

Let -l 2 -1/2 and q2  q3 = q4 - 1/4. The determining

inequalities are

1/8 < p 24  < 2/8, +" .n

2242/8 < p2 + P4 - 218 24 and :

3/8 V (p + P < p + p + < 4/8 A (2/8+ + )"

(2 3  p24) 22 -23 24 + -23 +-24)

The first step in the determination of all extreme points consists of

eliminating the symbols V and A from the above set of inequalities

by splitting, if necessary, some of the inequalities. For example, the

inequality 2/8 < p23 + p2 4  - 2/8 + p24  is equivalent to the two

inequalities 2/8 < p 2 3 + p24 < 3/8 and 3/8 < P2 3 + p24 _ 2/8 + p 2 4 .
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The splitting certainly helps to get rid of the symbols V and A. The

above set of determining inequalities is equivalent to the following two

sets of inequalities.

* A. 1/8 < P < 2/8

2/8 < v23 + p 2 4 
<  3/8

3/8 < P + p23 + p24  4/8

B. 1/8 p24  < 2/8

3/8 < p23 + P24  < 2/8 + P2 4

P23 + p24 < P2 2 
+ P2 3 + P2 4  < 4/8

Now, the second step consists of the following mancevres. In each set

of inequalities, set the central expression equal to the expression either

on the right or on the left. This will result in three equations in three

unknowns. These linear equations are very easy to solve. From the solution

so obtained, one can build a matrix in M (1/2,1/2; 1/4,1/4,1/4,1/4)
PQD

using the marginality restrictions. The set of all extreme points of

M (1/2,1/2; 1/4.1/4,1/4,1/4) is contained in the collection of all
PQD

matrices so obtained above. After eliminating the duplicates, the following

the
is collection of all extreme points of M PQD(1/2,1/2; 1/4,1/4,1/4,1/4).

r/8 1/8 1/8 1/8 F2/8 0 1/8 1/8

L1/S 1/ 1/S 1/S , L 0 2/8 1/8,

.

'..• ~° °. .o *t *l Bm°i°° ° . . . . : , U .. . . . * .. d ?. *°



FC82/8 0 ]18 [2A 1/8 0 1/ 2/8]

[/8 1/8 2/8 01 F2/8 0/ 2/8 0

1/8 0 1/8 2/8 , L0  1/8 1/8 2/8]

an [/8 2/8 0 O

The determination of the set of all extreme points in the general case

can be achieved by following basically the above two steps. For further

details, see Subramanyam and Bhaskara Rao (1986).
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4. Applications.to Contingency Tables
.

In this section, we are interested in the following problem. Let

X and Y be random variables with known marginal distributions X and V

respectively but with unknown joint distribution function. We want to

test the hypothesis that X and Y are independent against the alternative

that X and Y are strictly positive quadrant dependent. For simplicity,

assume that the support of X is {l,2,... ,m} and that of v is

{l,2,...,n}. Let the data consist of N independent realizations of (X,Y).

Let n .Numberof (XY)s with XIiandYJ, i 1to m and
ij

j = I to n. The data can be arranged in the form of a contingency table

as follows.

n2 1  n2 2  .. 2n

nml nM2 " mn

There are a plethora of tests available to test the hypothesis of independence. *'

A problem of choice arizes to test the above hypothesis of independence

against the above specific alternative. One way to resolve the dilemma is

to compare the power functions of the tests. The domain of the power function

%- 9 -- k ...,, .-.. Xi. ---. C-; ;>:";")-'-".- : ?; ' v- . .---. :-;.':..--< -:<'-4.-' t
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of a test at i

is M (X,v). Computation of the power of a given test at every point
PQD*.I

6'.1

in the domain is not feasible practically. The following theorem asserts

that it is enough to compute the power at all extreme points of (X,V).
PQD

(1) (2)
Theorem 4.1 Let the extreme points of M pQD(XM) be i , ...

W

(k) Let T be a test proposed to test the hypothesis of independence -

and BT( ) its power function. Let U be an arbitrary distribution
T

in MpQD (X,V).(Then we can write

u - u (C ) + a U(2) +  + a U(k)
1 2 k

for some CL, a2, ... , > 0 with + ... +2 -. ).....

Then

BT(U) -a I (U + a2 BT~(2) + + (k)

T IT 2,T kT

For a discussion of this theorem, see Bhaskara Rao, Krishnaiah and

(1985).
Subramanyas A In view of this theorem, if we wish to compare the performance

of two tests, we merely compute the powers of these tests at the extreme

point distributions and then compare these powers point by point. To

illustrate the mechanism of this theorem, we consider the case m - 2 - n.

- .

Assume, for simplicity, that p2  < q2- Then the extreme points

of PQDlPlP2U qlq2 are

gii
a. * *.~ * *~ * --. -.- . * a * *. .-- *-*.

* * * ' ' C 4.'. . a a
* a . .- *-*-**--. . . . . . . *.* *..
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p q1  pq1 q- q q2-

P 1 pand L P2 "

There are two popular measures of association between X and Y

defined by

Gama Ratio y + - Pd

11l 22 + 12 21

(see Goodman and Kruskal)
and

11p22 -Pl 2P2 lSpearman's rho - p 112- 21"
(pl,2qlq2

If X and Y are independent, then y 0 O - p. Further, one can

show that y > 0 if and only if X and Y ar. strictly positive

quadrant dependent and that p > 0 if and only if X and Y are strictly

positive quadrant dependent.

Test based on the gamm ratio T

Reject the null hypothesis if and only if

n n n n
11n22 1221 - a.
n n + n n -

11 22 12 21

Test based on the rho criterion T
2

Reject the null hypothesis if and only if

n -n n12n21

0 -?1122 22 > a.
(pP 2q q2)

. . . . .. . . . . . . . . I- " -" -" ' " - '- -
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Let us calculate the power of the tests T. and T at he-

extreme points of M wA.(p1,P2C q 2

8T(P) - 8T(P) - Size of the tests T and T.
T 1 Ti 1I 2'

1 2

Under P2, n2 1 - 0 almost surely and consequently, y - 1

with probability unity. Therefore,

(P2) - Pr(Rejecting the null hypothesis/P2 )

- Pr(Y > a/ P2) - 1

It is now obvious that (P) < (P Hence the power
T 2- T 22 1

function of T dominates the power function of T2. As a matter of f~ct.

the power function of T will always dominate the power function of any

test proposed for testing the hypothesis of independence. In a nutshell,

what this means is that the test based on Ga- Ratio

is the uniformly most powerful test for testing the hypothesis of

independence against the alternative of strict positive quadrant dependence

in the context of 2 x 2 contingency tables.

Comparisons of the power functions of various tests have

been carried out more elaborately in Bhaskara Rao irisnnaiah and

Subramanyam (1985).
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